

MESTRADO PROFISSIONAL EM MATEMÁTICA – PROFMAT UNIVERSIDADE DO ESTADO DO AMAZONAS – UEA FUNDAMENTOS DE CÁLCULO – MA 22 PROFESSORES: ALESSANDRO MONTEIRO/ALMIR NETO

QUESTÃO 05:

- a) Dê uma definição para integral indefinida a partir do conceito de antiderivadas (primitivas).
- b) Enuncie o Primeiro Teorema Fundamental do Cálculo.
- c) Seja f uma função ímpar e contínua em $\left[-r,r\right]$, r>0, mostre que $\int\limits_{-r}^{r}f(x)\ dx=0$.

Solução:

a) Seja f uma função contínua em um intervalo I. O conjunto formado por todas as antiderivadas (primitivas) de f em I é chamado de integral indefinida de f. Este conjunto é denotado por $\int f(x) \ dx$, e lido como integral indefinida de f(x) em relação a x, por conta da diferencial dx. Escrevemos:

$$\int f(x) \ dx = F(x) + C, \ onde \ C \in \mathbb{R} \ e \ \left(F(x) + C \right)' = f(x).$$

- **b)** Se f for integrável em $\begin{bmatrix} a,b \end{bmatrix}$ e se F for uma primitiva de f em $\begin{bmatrix} a,b \end{bmatrix}$ então $\int\limits_a^b f(x) \ dx = F\Big(b\Big) F\Big(a\Big).$
- c) Fazendo-se u = -x temos que

$$\begin{cases} dx = -du \\ x = -r \Rightarrow u = r \\ x = r \Rightarrow u = -r \\ f(-u) = -f(u), \text{ pois } f \text{ \'e impar.} \end{cases}$$

Assim,

$$\int_{-r}^{r} f(x) \ dx = \int_{r}^{-r} f(-u) \left(-du \right) = \int_{r}^{-r} f(u) \ du = -\int_{-r}^{r} f(u) \ du.$$

Como $\int_{-r}^{r} f(x) dx = \int_{-r}^{r} f(u) du$ então $\int_{-r}^{r} f(x) dx = -\int_{-r}^{r} f(x) dx$. Logo, $\int_{-r}^{r} f(x) dx = 0$.