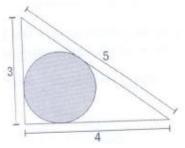
Professor Alessandro Monteiro

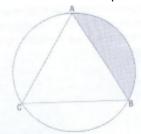
Geometria I – Lista 11

01. A razão entre a área do triângulo e a área do círculo inscrito, ilustrados na figura abaixo é:



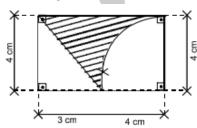
- d) $\frac{1}{\pi}$

02. Nesta figura, o triângulo equilátero ABC está inscrito numa circunferência de raio 2. Calcule a área hachurada. (Use π = 3)



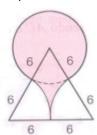
- a) $4 \sqrt{3}$
- b) $4-3\sqrt{3}$ c) $12-\sqrt{3}$
- d) $12 3\sqrt{3}$ e) $4\sqrt{3}$

03. A área da superfície hachurada na figura mede, em cm²:



- a) $3 + 2\pi$
- b) $6 + 4\pi$
- c) 28 6π
- d) 22 4π
- e) $30 + 6\pi$

04. Calcule a área da figura pintada abaixo, em cm².



- a) $36\sqrt{3} + 18\pi$
- b) $12\sqrt{3} + 18\pi$
- c) $36\sqrt{3} 18\pi$

- d) $12\sqrt{3} + 54\pi$
- e) $36\sqrt{3} 36\pi$

www.matematicamonteiro.com

05. A área compreendida entre uma circunferência de raio R e um hexágono regular inscrito nessa circunferência é:

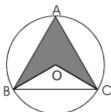
a)
$$R^{2}(\pi + 3\sqrt{3})$$
 u.a

b)
$$R^2 (\pi - 3\sqrt{3})$$
 u.a

a)
$$R^2 \left(\pi + 3\sqrt{3} \right)$$
 u.a b) $R^2 \left(\pi - 3\sqrt{3} \right)$ u.a c) $R^2 \left(\pi - \frac{2\sqrt{3}}{3} \right)$ u.a

d)
$$R^2 \left(\pi - \frac{3\sqrt{3}}{2}\right)$$
 u.a e) $R^2 \left(\pi - \frac{\sqrt{3}}{3}\right)$ u.a

06. O triângulo ABC é equilátero e está inscrito em uma circunferência de centro O cujo raio mede 2 cm, como mostra a figura abaixo. A área da parte hachurada da figura é igual a:



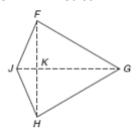
a)
$$\sqrt{2}$$
 cm²

b)
$$2\sqrt{3} \text{ cm}^2$$

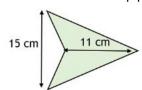
a)
$$\sqrt{2}$$
 cm² b) $2\sqrt{3}$ cm² c) $5\sqrt{3}$ cm²

d)
$$7\sqrt{2}$$
 cm²

07. Calcule a área da pipa abaixo sabendo-se que JK = 3 metros, FK = 7 metros, GK = 12 metros e HK = 7 metros.

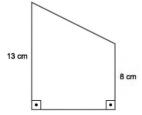


08. Calcule a área da pipa abaixo.

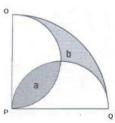


09. A área do trapézio da figura é 126 cm². Encontre o perímetro desse trapézio:

- a) 42 cm
- b) 46 cm
- c) 51 cm
- d) 53 cm
- e) 62 cm



10. OPQ é um quadrante de círculo no qual foram traçados semicírculos de diâmetros OP e PQ. A razão entre as áreas hachuradas a e b é:



a)
$$\frac{1}{\sqrt{2}}$$
 b) 1/2

c)
$$\frac{\pi}{2}$$

e)
$$\frac{\pi}{3}$$

www.matematicamonteiro.com

